Descarga la hoja de práctica 6 aquí=>>HOJAN°6

Como apoyo enseguida te muestro un resumen del tema

Álgebra de funciones.

En esta sección consideraremos las operaciones con funciones. Las funciones obtenidas a partir de estas operaciones –llamadas la suma, la diferencia, el producto y la división se definen como sigue:

Sean f y g dos funciones y supongamos que Df y Dg denotan los dominios de f y g, respectivamente. La función f + g está definida por

(f + g )(x) = f(x) +g(x)

El dominio de f + g es Df Dg

Ejemplo 1.

Sea f(x) = x y g(x) = x. Entonces (f + g) (x) = x + x. El dominio de f es (−∞,∞) y el dominio de g es [0, ∞). Así el dominio de f + g es Df ∩Dg = (-∞, ∞) ∩ [0, ∞) = [0, ∞).

Ejemplo 2.

Sea f(x) = x3 – 1 y g(x) = 4x. Si x = 3, entonces f(3) = (3)3 – 1 = 26 y g(3) = 4(3) = 12. Así, (f + g) (3) = f(3) + g(3) = 26 – 12 = 14.

Sean f y g dos funciones y supongamos que Df y Dg denotan los dominios de f y g, respectivamente. La función f – g está definida por

(f – g)(x) = f(x) – g(x)

El dominio de f – g es Df Dg

Ejemplo 3.

Sea f(x) = 1x+ y g(x) = 4x−, entonces f( – g)(x) = f(x) – g(x) = 1x+ – 4x−. El dominio de f es [-1, ∞), y el dominio de g es [4, ∞). El dominio de f – g es Df ∩ Dg = [-1, ∞) ∩ [4, ∞) = [4, ∞).

Sean f y g dos funciones y Df y Dg denotan los dominios de f y g, respectivamente. La función f g está definida por

(f g)(x) = f(x) g(x).

El dominio de f g es Df Dg

Ejemplo 4.

Sea f(x) = x – 2 y g(x) = x + 2. Entonces (f⋅g)(x) = f(x) g(x) = ( x + 2 )( x – 2) = x2 – 4. El dominio de f es (−∞, ∞) y el dominio de g es (−∞, ∞). Por tanto el dominio de f ⋅ g es Df ∩ Dg = (−∞, ∞).

Ejemplo 5.

Sea f(x) = | x | y g(x) = 5. Entonces (f ⋅g)(x) = f(x) g(x) = | x |⋅5. El dominio de f es 3 y el dominio de g es 3. Entonces el dominio de f ⋅ g es Df ∩ Dg = 3. Si x = -2, entonces (f ⋅ g)(-2) = f(-2) ⋅ g(-2) = |-2|5 = 2⋅5 = 10.

Sean f y g dos funciones y Df , Dg sus dominios respectivamente. Entonces la función f/g está definida por:

(f/g)(x) = f(x)/g(x) , g(x) 0

El dominio de f /g es Df Dg excluyendo los valores de x para los cuales g(x) = 0.

Ejemplo 6.

Si f(x) = x + 4 y g(x) = x2 – 1. Entonces (f/g) (x) = f(x) / g(x) = x + 4/(x2 – 1). El dominio de f y el de g son los números reales. La función g(x) = x2 – 1 es cero para x = 1 y x = -1. Por lo tanto el dominio de f/g es R – {-1, 1}

Ejemplo 7.

Si f(x) = x y g(x) = x−. Encuentre (f/g) (x).

Solución:

El dominio de f es [0, ∞) y el dominio de g es (-∞, 0]. Entonces Df ∩Dg = {0}, pero g(x) = x− es cero para x = 0. Ahora el dominio de f/g es Df ∩Dg excluyendo los valores para los cuales g(x) es igual a cero. Por lo tanto el dominio de f/g es el conjunto vacío. De donde se tiene que la función (f/g)(x) = x / x− no tiene dominio.

Composición de funciones

Sabemos que la notación “g(a)” significa el valor de la función g(x) cuando x = a; se obtiene al sustituir a por x, siempre que x aparezca en la expresión de g(x). Por ejemplo,

si g(x) = x3 + 2, entonces g(a) = a3 + 1;

si g(x) = 2xx−, entonces g(a) = 2aa

Si f(x) es una función, entonces g(f(x)) es la función que se obtiene al sustituir f(x) en lugar de x, siempre que ésta ocurra en la expresión de g(x). La función g(f(x)) es llamada la compuesta de g con f y se utiliza el símbolo operacional o para denotar la compuesta de g con f. Así (g o f) (x) = g(f(x)).

Si g(x) = x2 y f(x) = x + 2, entonces (g o f)(x) = g(f(x)) = (f(x))2 = (x + 2)2. ¿Cuál es el dominio de g o f? La siguiente definición nos da la respuesta,

Si f es una función de X en Y y g es una función de Y a Z, entonces la función compuesta g o f es la función de X a Z dada por

(g o f)(x) = g(f(x))

para cada x en X. El dominio de g o f es

Dgof = {x | x ε Df y f(x) ε Dg}

Es muy importante hacer notar que para formar la función composición es necesario que el rango de la función f sea igual o un subconjunto del dominio de la función g.

Ejemplo 9.

Sea f(x) = x + 3 y g(x) = 2x + x . Encuentre gof y especifique su dominio.

Solución:

Por las definiciones de gof, f y g, tenemos que

(gof) (x) = g(x + 3) = 2(x + 3) + 3x+

El dominio X de f es el conjunto de todos los números reales. Sin embargo (gof) (x) es un número real sólo si x ≥ -3. Por lo tanto el dominio de gof es el intervalo [-3, ∞). x f(x) g(f(x))

También es posible calcular la composición de f con g. En este caso obtenemos primero la imagen de x bajo g y luego aplicamos f a g(x). Esto nos da una función compuesta de Z a X denotada por fog. Por lo tanto por definición (fog) (x) = f(g(x)) para cada x en Z.

Ejemplo 10.

Sean f(x) = x y g(x) = 2x – 3. Encuentre (fog) (x), (gof)(x) y sus dominios.

Solución:

Por las definiciones de fog, gof, f y g tenemos (fog)(x) = f(g(x)) = f(2x – 3) =

El dominio de g es (-∞, ∞), y el dominio de f es [0, ∞). El dominio de fog es el conjunto de números reales para los cuales 2x – 3 ≥ 0, o, equivalentemente [3/2, ∞).

De la misma forma

(gof)(x) = g(f(x)) = g(x) = 2